

Safe Reliable Affordable

- **♦**5:05 ~ 5:20 Welcome
- ♦5:20 ~ 5:55 Advisor Introductions/What do you want to do?
- ♦5:55 ~ 6:00 Break
- ♦6:00 ~ 6:10 Discussion on Engineering as a Career
- ♦6:10 ~ 7:00 Student Introductions/Mixers, Survey, etc...

Advisor Contact Sheet

- ♦ Sam Lee, Ph.D.
 - Research Engineer
 - (216) 433-5296
 - Sam.Lee-1@nasa.gov

- ♦ Jinho Lee, Ph.D.
 - Research Engineer
 - (216) 433-5877
 - Jinho.Lee-1@nasa.gov
- ♦ Stephanie D. Brown-Houston
 - 216-433-8006
 - sdbrown-houston@nasa.gov

Jinho Lee (Gin-Ho)

♦ Education -

- · Graduate of New York City Public School System.
- B.S. and PhD Aero Engineering, State University of New York at Buffalo.
- Specialized Job Assignment Computational Specialist for the Combustion Branch of Turbomachinery and Propulsions System Division.
 - CFD code development/Validation of Hypersonic Technology development
 - Principal Combustion Engineer for NASA's RBCC and TBCC programs
- Hobbies and Interests High Speed flight, Model Airplanes, Playing with family and computers.

3

Sam Lee

♦ Education

- B.S. Mechanical Engineering Cornell University (1994)
- M.S. & Ph.D. Aerospace Engineering University of Illinois (1997, 2001)

♦ Job Assignment

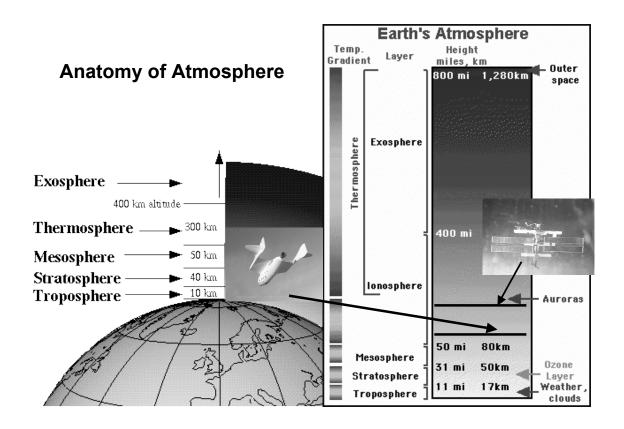
- Research engineer for Aircraft Icing Branch
- · Worked at NASA for 6 years
- Experimental studies on effects of in-flight icing on aircraft aerodynamics
- · Wind tunnel and flight testing

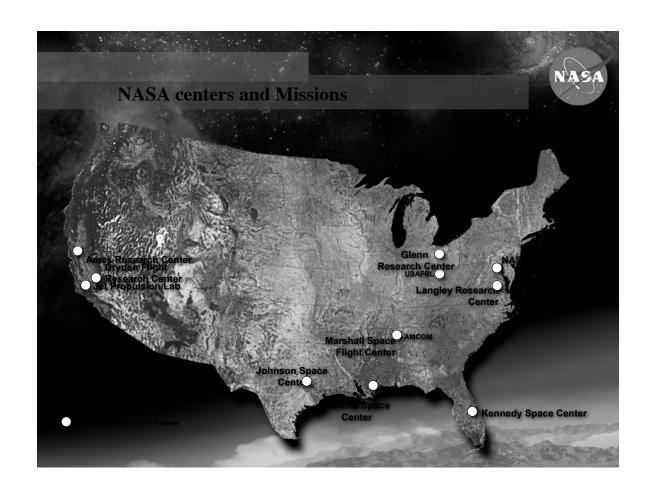
♦ Hobbies & Interests

• Photography, movies, video game, basketball

Explorer Post 630 2009/10 Aeronautics Post

- ♦ Ground Rule/Background Information
- ♦ Get to know each other
- ♦ Question: What does an engineers do during the day?
- ♦ What we will do for the year- What we did in the past
- ♦ Question: How much does an engineer make?




What is Exploring?

- ♦ We (advisors) are here to share with you (Scouts) our NASA experiences.
- ♦ This is not a class!
- **♦** This is a chance for you find out what is behind the fence.
- ♦ This is also chance to find out for yourself that your 'current and future' academic endeavor will payoff.
- ♦ You have to help us by engaging in conversation with us
- ♦ Need to keep a couple of Saturdays too!

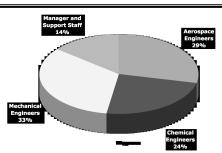
Safe Reliable Affordable

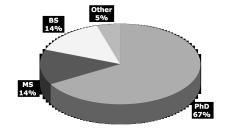
Safe Reliable NASA Glenn RC

13

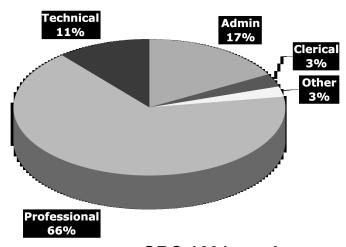
Safe Reliabl Aff

◆ Space Station (Largest Science Lab?)


Engineers design stuff to make our live better!


Today- many different types of engineers

Engineers drive trains?


- 21 Scientists and Engineers
- 6 Aerospace Engineering
- 5 Chemical Engineering
- 7 Mechanical Engineering
- 2 Management (both former engineers)
- 1 Administrative Support

NASA Glenn Research Center

GRC 1631 employee

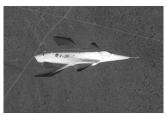
19

Projection to 2016 based on 2006 Labor data: (Growth per area)

Engineering: (1,500,000) +11 % Other Engineering 23% Mechanical Engineering 29% Mechanical Engineering 15% Chemical Engineering: (30,000) Industrial Engineering 15% Civil Engin

Mechanical Engineering:(220,000)

+4%



What is Aerospace?

There are two primary divisions within Aerospace

♦ Aeronautics: Focuses on systems that operate in the Earth's atmosphere

♦ Astronautics: Focuses on systems that operate in space

21

Safe Reliable Affordable

Aeronautics

Aeronautics:

Design, development, analysis, testing, and production of *aircraft* for both military and civilian markets.

- Private companies and government agencies:
 - Mainly aerospace, mechanical, structural, and electrical engineers
 - Also other type of engineers, scientists, and technicians from a variety of specialties.

Specific disciplines:

Aerodynamics and fluid dynamics; propulsion, guidance, navigation and control, aircraft structures and materials, mechanical design, electronics systems and flight control, manufacturing and operations, communications; systems engineering; software engineering; and computer engineering.

Principal Divisions in Aeronautics

Military aircraft (70% of total aircraft sales)

Civilian aircraft (30% of total aircraft sales)

Aircraft engines

Missile systems (33% of total rocket sales)

23

Exploring

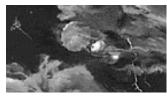
Safe Reliable NASA

Astronautics

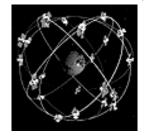
Astronautics:

Design, development, analysis, testing, and production of rockets, spacecraft, and global space systems.

- Private companies and government agencies:
 Engineers, scientists, and technicians from many specialties.
- ♦ Specific disciplines:


Aerodynamics and fluid dynamics; propulsion, guidance, navigation and control; spacecraft and rocket structures and materials; mechanical design; electronics systems and flight control; reentry physics and technology; space processing, manufacturing and operations; human and evironmental factors in design communications; systems engineering; software engineering; and computer engineering.

Principal Divisions in Astronautics



Launch vehicles (66% of total rocket sales)

Global space systems (national and multi-national)

25

Exploring

Safe Reliable Nasa Affordable

Typical Educational Scenario

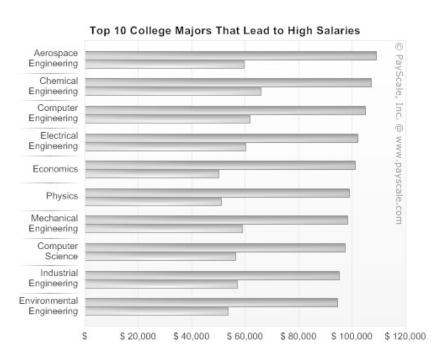
- ♦ BS (minimum) 4-5 years
- ♦ MS (recommended) 1-2
- ♦ PhD (think about it) 4-6

Areas of Specialization

- Aerodynamics The study of fluid motion around a body moving through the atmosphere at speeds that range from subsonic to hypersonic.
- Dynamics & Control The study of techniques for aerospace vehicle guidance and the analysis of flight vehicle trajectories, orbits, and dynamic motion.
- Propulsion The study of basic principles of propulsion and the application of gas dynamics to internal flows.
- Structures The study of the principles of mechanics and analysis techniques necessary to ensure structural integrity of a vehicle, primarily an aircraft or spacecraft.

15 top-earning degrees

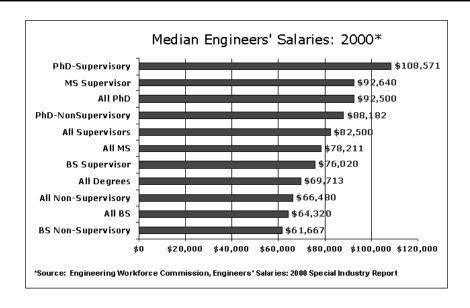
1 Petroleum engineering	\$83,121
2 Chemical engineering	\$64,902
3 Mining engineering	\$64,404
4 Computer engineering	\$61,738
5 Computer science	\$61,407
6 Electrical engineering	\$60,125
7 Mechanical engineering	\$58,766
8 Industrial engineering	\$58,358


9	Systems engineering	\$57,438
10	Engineering technology	\$56,447
11	Actuarial science	\$56,320
12	Aeronautical engineering	\$56,311
13	Agricultural engineering	\$54,352
14	Biomedical engineering	\$54,158
15	Construction management	\$53,199

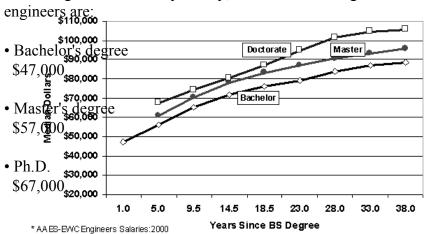
NATIONAL ASSOCIATION OF COLLEGES AND EMPLOYERS

27

Exploring


Safe Reliable Affordable

Supervisory Salaries by Degree



29

Safe Reliable NASA Affordable

Salary Information by Degree

According to a 2000 satary were yether median salaries for engineers are:

